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Abstract. Three variants of multi-threaded ic3 are presented. Each
variant has a fixed number of ic3s running in parallel, and communi-
cating by sharing lemmas. They differ in the degree of synchronization
between threads, and the aggressiveness with which proofs are checked.
The correctness of all three variants is shown. The variants have unpre-
dictable runtime. On the same input, the time to find the solution over
different runs varies randomly depending on the thread interleaving. The
use of a portfolio of solvers to maximize the likelihood of a quick solution
is investigated. Using the Extreme Value theorem, the runtime of each
variant, as well as their portfolios is analysed statistically. A formula
for the portfolio size needed to to achieve a verification time with high
probability is derived, and validated empirically. Using a portfolio of 20
parallel ic3s, speedups over 300 are observed compared to the sequential
ic3 when on hardware model checking competition examples.

1 Introduction

In recent years, ic3 [5] has emerged as a leading algorithm for model checking
hardware. It has been refined [8] and incorporated into state-of-the-art tools,
and generalized to verify software [10, 6]. Our interest is that ic3 is amenable
to parallelization [5], and promises new approaches to enhance the capability of
model checking by harnessing the abundant computing power available today.
Indeed, the original ic3 paper [5] described a parallel version of ic3 informally
and reported on its positive performance. In this paper, we build on that work
and make three contributions.

First, we formally present three variants – ic3sync, ic3async and ic3proof
– of parallel ic3, and prove their correctness. All the variants have some common
features: (i) they consist of a fixed number of threads that execute in parallel;
(ii) each thread learns new lemmas and looks for counterexamples (CEXes) or
proofs as in the original ic3; (iii) all lemmas learned by a thread are shared with
the other threads to limit duplicate work; and (iv) if any thread finds a CEX,
the overall algorithm declares the problem unsafe and terminates.

However, the variants differ in the degree of inter-thread synchronization,
and the frequency and technique for detecting proofs, making different trade-offs
between the overhead and likelihood of proof-detection. Threads in ic3sync (cf.
Sec. 3.1) synchronize after each round of new lemma generation and propagation,
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and check for proofs in a centralized manner. Threads in ic3async (cf. Sec. 3.2)
are completely asynchronous. Proof-detection is decentralized and done by each
thread periodically. Finally, threads in ic3proof are also asynchronous and
perform their own proof detection, but more aggressively than ic3async. Each
thread saves the most recent set of inductive lemmas constructed. When a thread
finds a new set of inductive lemmas, it checks if the collection of inductive lemmas
across all threads form an inductive invariant. In order of increasing overhead
(and likelihood) of proof-detection, the variants are: ic3sync, ic3async, and
ic3proof. Collectively, we refer to the variants as ic3par.

The runtime of ic3par is unpredictable (this is a known phenomenon [5]).
In essence, the number of steps to arrive at a proof (or CEX) varies with the
thread interleaving. We propose to counteract this variance using a portfolio –
run several ic3pars in parallel, and stop as soon as any one terminates with an
answer. But how large should such a portfolio be? Our second contribution is
a statistical analysis to answer this question. Our insight is that the runtime of
ic3par should follow the Weibull distribution [18] closely. This is because it can
be thought of as the minimum of the runtimes of the threads in ic3par, which
are themselves independent and identically distributed (i.i.d.) random variables.
According to the Extreme Value theorem [9], the minimum of i.i.d. variables
converges to a Weibull. We empirically demonstrate the validity of this claim.

Next, we hoist the same idea to a portfolio of ic3pars. Again, the runtime of
the portfolio should be approximated well by a Weibull, since it is the minimum
of the runtime of each ic3par in the portfolio. Under this assumption, we derive
a formula (cf. Theorem 5) to compute the portfolio size sufficient to solve any
problem with a specific probability and speedup compared to a single ic3par.
For example, this formula implies that a portfolio of 20 ic3pars has 0.99999
probability of solving a problem in time no more than the “expected time” for a
single ic3par to solve it. We empirically show (cf. Sec. 5.2) that the predictions
based on this formula have high accuracy. Note that each solver in the portfolio
potentially searches for a different proof/CEX. The first one to succeed provides
the solution. In this way, a portfolio utilizes the power of ic3 to search for a
wide range of proofs/CEXes without sacrificing performance.

Finally, we implement all three ic3par variants, and evaluate them on bench-
marks from the 2014 Hardware Model Checking Competition (HMCC14) and
“TIP”. Using each variant individually, and in portfolios of size 20, we observe
that ic3proof and ic3async outperform ic3sync. Moreover, compared to a
purely sequential ic3, the variants are faster, providing an average speedup of
over 6 and a maximum speedup of over 300. We also show that widening the
proof search of ic3 by randomizing its SAT solver is not as effective as paral-
lelization. Complete details are presented in Section 5.1.

Related Work. The original ic3 paper [5] presents a parallel version infor-
mally, and shows empirically that parallelism can improve verification time. Our
ic3par solvers were inspired by this work, but are different. For example, the
parallel ic3 in [5] implements clause propagation by first distributing learned
clauses over all solvers and then propagating them one frame at a time, in lock



step. It also introduces uncertainty in the proof search by randomizing the back-
end SAT solver. Our ic3par solvers perform clause propagation asynchronously,
and use deterministic SAT solvers. We also present each ic3par variant formally
with pseudo-code and prove their correctness. Finally, we perform a statistical
analysis of the runtimes of both ic3par solvers and their portfolios. Experi-
mental results (cf. Sec. 5.1) indicate that a portfolio of ic3par solvers is more
efficient than a portfolio composed of ic3 solvers with randomized SAT solvers.

A number of projects focus on parallelizing model checking [11, 4, 15, 2, 3,
1]. Ditter et al. [7] have developed GPGPU algorithms for explicit-state model
checking. They do not report on variance in runtime, nor analyse it statistically
like us, or explore the use of portfolios. Lopes et al. [13] do address variance
in runtime of a parallel software model checker. However, their approach is to
make the model checker’s runtime more predictable by ensuring that the coun-
terexample generation procedure is deterministic. They also do not perform any
statistical analysis or explore portfolios.

Portfolios have been use successfully in SAT solving [20, 17, 12, 14], SMT
solving [19] and symbolic execution [16]. However, these portfolios are composed
of a heterogeneous set of solvers. Our focus is on homogeneous portfolios of
ic3par solvers and statistical analysis of their runtimes.

2 Preliminaries

Assume Boolean state variables V , and their primed versions V ′. A verification
problem is (I, T, S) where I(V ), T (V, V ′) and S(V ) denote initial states, tran-
sition relation and safe states, respectively. We omit V when it is clear from
the context, and write S′ to mean S(V ′). Let Post(X) denote the image of X
under the transition relation T . Let Postk(X) be the result of applying Post(·) k
times on X with Post0(X) = X, and Postk+(X) =

⋃
j≥k

Postj(X). The problem

(I, T, S) is safe if Post0+(I) ⊆ S, and unsafe (a.k.a. buggy) otherwise.
A random variable X has a Weibull distribution with shape k and scale

λ, denoted X ∼ wei(k, λ), iff its probability density function (pdf) fX and
cumulative distribution function (cdf) FX are defined as follows:

fX(x) =

{
k
λ (xλ )k−1e−(

x
λ )
k

if x ≥ 0
0 if x < 0

FX(x) = 1− e−( xλ )
k

Let X1, . . . , Xn be i.i.d. random variables (rvs) whose pdfs are lower bounded
at zero, i.e., ∀x < 0�fXi(x) = 0. Then, by the Extreme Value theorem [9] (EVT),
the pdf of the rv X = min(X1, . . . , Xn) converges to a Weibull as n→∞.

3 Parallelizing IC3

We begin with a description of the sequential ic3 algorithm. Fig. 1 shows its
pseudo-code. ic3 works as follows: (i) checks that no state in ¬S is reachable



1 //-- global variables
2 var (I, T, S) : problem (P )
3 var F: frame [] (array of frames)
4 var K: int (size of F)
5 var bug: bool (CEX flag)
6
7 //-- invariants
8 ∀i ∈ [0,K− 1], let f(i) =

∧
j∈[i,K−1]

∧
α∈F[j]

α

9 A1 : ∀i ∈ [0,K− 1] � I =⇒ f(i)

10 A2 : ∀i ∈ [0,K− 2] � f(i) ∧ T =⇒ f ′(i+ 1)

11 A3 : ∀i ∈ [0,K− 3] � f(i) ∧ T =⇒ S′

12 A4 : ∀i ∈ [0,K− 2] � f(i) ∧ T =⇒ S′

13
14 //-- main function.
15 bool IC3 ()

16 if (I ∧ ¬S 6= ⊥) ∨ (I ∧ T ∧ ¬S′ 6= ⊥)
17 return ⊥;
18 K := 3; F[0] := I; F[1] := ∅;
19 F[2] := ∅; bug := ⊥;
20 while (>)
21 @INV{I1 : A1 ∧ A2 ∧ A3}
22 strengthen(F,K);
23 @INV{I2 : bug ∨ (A1 ∧ A2 ∧ A4)}
24 if (bug) return ⊥;
25 @INV{I3 : A1 ∧ A2 ∧ A4}
26 propagate(F,K);
27 if (∃i ∈ [1,K− 2] � F[i] = ∅)
28 return >;
29 @INV{I3}
30 F[K] := ∅; K := K + 1;

31 //-- add new lemmas to frames. stop
32 //-- with a CEX or when A4 holds.
33 void strengthen (F,K)
34 var PQ : priority queue
35 while (>)
36 if (f(K − 2) ∧ T =⇒ S′) return;

37 let m |= f(K − 2) ∧ T ∧ ¬S′;
38 PQ.insert(m,K − 3);
39 while (¬PQ.empty())
40 (m, l) := PQ.top();

41 if (f(l) ∧ T ∧m′ = ⊥)
42 F [l + 1] := F [l + 1] ∪ {¬m};
43 PQ.erase(m, l);
44 else if (l = 0)
45 bug := >; return;
46 else

47 let m′ |= f(l) ∧ T ∧m;

48 PQ.insert(m′, l− 1);
49
50 //-- push inductive clauses forward.
51 //-- check for proof of safety.
52 void propagate(F,K)
53 for i : 1 . . . K − 2
54 for α ∈ F [i]

55 if (f(i) ∧ T =⇒ α′)
56 F [i+ 1] := F [i+ 1] ∪ {α};
57 F [i] := F [i] \ {α};

Fig. 1. Pseduo-Code for ic3. Variables are passed by reference.

in 0 or 1 steps from some state in I (lines 16–17); (ii) iteratively construct an
array of frames, each consisting of a set of clauses, as follows: (a) initialize the
frame array and flags (lines 18–19); (b) strengthen() the frames by adding
new clauses (line 22); if a counterexample is found in this step (indicated by bug
being set), ic3 terminates (line 24); (c) otherwise, propagate() clauses that are
inductive to the next frame (line 26); if a proof of safety is found (indicated by
an empty frame), ic3 again terminates (lines 27–28); (d) add a new empty frame
to the end of the array (line 30) and repeat from step (b).

Definition 1 (Frame Monotonicity). A function is frame monotonic if at
each point during its execution, ∀i ∈ [0,K − 1] � f(i) =⇒ f̃(i) where f̃(i) is the
value of f(i) when the function was called.

Correctness. Fig. 1 also shows the invariants (indicated by @INV) before and
after strengthen() and propagate(). Since strengthen() always adds new
lemmas to frames, it is frame monotonic, and hence it maintains A1 and A3. It
also maintains A2 since a new lemma ¬m is added to frame F [l + 1] (line 42)
only if f(l) ∧ T =⇒ ¬m′ (line 41). Finally, when strengthen() returns, then
either bug = > (line 45), or f(K − 2) ∧ T =⇒ S′ (line 36). Hence I2 is a valid
post-condition for strengthen(). Also, propagate() is frame monotonic since
it always pushes inductive lemmas forward (the order of the two statements at
lines 56–57 is crucial for this). Hence, propagate() maintains A1 and A4 at all



58 //-- global variables
59 var (I, T, S) : problem (P )
60 var ∀i ∈ [1, n] � Fi: frame []
61 var K: int (size of each Fi)
62 var bug: bool (CEX flag)
63
64 //-- invariants
65 ∀j ∈ [0,K− 1], let
66 f(j) =

∧
i∈[1,n]

∧
k∈[j,K−1]

∧
α∈Fi[k]

α

67
68 B1 : ∀j ∈ [0,K− 1] � I =⇒ f(j)

69 B2 : ∀j ∈ [0,K− 2] � f(j) ∧ T =⇒ f ′(j + 1)

70 B3 : ∀j ∈ [0,K− 3] � f(j) ∧ T =⇒ S′

71 B4 : ∀j ∈ [0,K− 2] � f(j) ∧ T =⇒ S′

72 bool IC3Sync (n)

73 if (I ∧ ¬S 6= ⊥) ∨ (I ∧ T ∧ ¬S′ 6= ⊥)
74 return ⊥;
75 K := 3; bug := ⊥;
76 ∀i ∈ [1, n] � Fi[0] := I; Fi[1] := Fi[2] := ∅;
77 while (>)
78 @INV{I4 : B1 ∧ B2 ∧ B3}
79 {strengthen(F1,K); propagate(F1,K)}
80 ‖ · · · ‖
81 {strengthen(Fn,K); propagate(Fn,K)};
82 @INV{I5 : bug ∨ (B1 ∧ B2 ∧ B4)}
83 if (bug) return ⊥;
84 @INV{I6 : B1 ∧ B2 ∧ B4}
85 if (∃j ∈ [1,K− 2] � ∀i ∈ [1, n] � Fi[j] = ∅)
86 return >;
87 @INV{I6}
88 ∀i ∈ [1, n] � Fi[K] := ∅; K := K + 1;

Fig. 2. Pseduo-Code for ic3sync. Variables are passed by reference. Functions
strengthen() and propagate() are defined in Fig. 1.

times. It also maintains A2 since a new lemma α is added to frame F [i+ 1] (line
56) only if f(i) ∧ T =⇒ α′ (line 55). Hence I3 is a valid post-condition for
propagate(). Finally, note that A4 ≡ A3 ∧ f [K − 2] =⇒ S. Hence, after K
is incremented, A4 becomes A3. Also, since the last frame is initialized to ∅, A1

and A2 are preserved. Hence: {I3}F[K] := ∅; K := K + 1; {I1}. The correctness
of ic3 is summarized by Theorem 1. Its proof is in Appendix A.

Theorem 1. If IC3() returns >, then the problem is safe. If IC3() returns ⊥,
then the problem is unsafe.

We now present the three versions of parallel ic3 and their correctness (their
termination follows in the same way as ic3 [5] – see Theorem 5 in Appendix A).

3.1 Synchronous Parallel IC3

The first parallelized version of ic3, denoted ic3sync, runs a number of copies of
the sequential ic3 “synchronously” in parallel. Let ic3sync(n) be the instance
of ic3sync consisting of n copies of ic3 executing concurrently. The copies
maintain separate frames. However, for any copy, the frames of other copies
act as “background lemmas”. Specifically, the copies interact by: (i) using the
frames of all other copies when computing f(i); (ii) declaring the problem unsafe
if any copy finds a counterexample; (iii) declaring the problem safe if some frame
becomes empty across all the copies; and (iv) “synchronizing” after each call to
strengthen() and propagate().

The pseudo-code for ic3sync(n) is shown in Fig. 2. The main function is
IC3Sync(). After checking the base cases (lines 73–74), it initializes flags and
frames (lines 75–76), and then iteratively performs the following steps: (i) run
n copies ic3 where each copy does a single step of strengthen() followed by
propagate() (lines 79–81); (ii) check if any copy of ic3 found a counterexample,
and if so, terminate (line 83); (iii) check if a proof of safety has been found, and if



89 //-- invariants
90 ∀j ∈ [0,max(K1, . . . ,Kn)− 1], let
91 f(j) =

∧
i∈[1,n]

∧
k∈[j,Ki−1]

∧
α∈Fi[k]

α

92
93 C1 : ∀j ∈ [0,Ki − 1] � I =⇒ f(j)

94 C2 : ∀j ∈ [0,Ki − 2] � f(j) ∧ T =⇒ f ′(j + 1)

95 C3 : ∀j ∈ [0,Ki − 3] � f(j) ∧ T =⇒ S′

96 C4 : ∀j ∈ [0,Ki − 2] � f(j) ∧ T =⇒ S′

97
98
99

100 //-- top -level function
101 bool IC3Async (n)

102 if (I ∧ ¬S 6= ⊥) ∨ (I ∧ T ∧ ¬S′ 6= ⊥)
103 return ⊥;
104 bug := ⊥;
105 IC3Copy(1) � · · · � IC3Copy(n);
106 return bug ? ⊥ : >;

107 //-- global variables
108 var (I, T, S) : problem (P )
109 var ∀i ∈ [1, n] � Fi: frame []
110 var ∀i ∈ [1, n] � Ki: int (size of Fi)
111 var bug: bool (CEX flag)
112
113 void IC3Copy (i)
114 Ki := 3; Fi[0] := I;
115 Fi[1] := ∅; Fi[2] := ∅;
116 while (>)
117 @INV{I7 : C1 ∧ C2 ∧ C3}
118 strengthen(Fi,Ki);
119 @INV{I8 : bug ∨ (C1 ∧ C2 ∧ C4)}
120 if (bug) return;
121 @INV{I9 : C1 ∧ C2 ∧ C4}
122 propagate(Fi,Ki);
123 if (∃j ∈ [1,Ki − 2] � ∀i ∈ [1, n] � Fi[j] = ∅)
124 return;
125 @INV{I9}
126 Fi[Ki] := ∅; Ki := Ki + 1;

Fig. 3. Pseduo-Code for ic3async. Variables are passed by reference. Functions
strengthen() and propagate() are defined in Fig. 1.

so, terminate (lines 85–86); and (iv) add a frame and repeat from step (i) above
(line 88). Functions strengthen() and propagate() are syntactically identical
to ic3 (cf. Fig. 1). However, the key semantic difference is that lemmas from
all copies are used to define f(j) (lines 65–66). Global variables are shared, and
accessed atomically. Note that even though all ic3 copies write to variable bug ,
there is no race condition since they always write the same value (>).

Correctness. The correctness of ic3sync follows from the invariants specified
in Fig. 2. To show these invariants are valid, the main challenge is to show that
if I4 holds at line 78, then I5 holds at line 82. Note that since strengthen()

and propagate() are frame monotonic, they preserve B1 and B3. This means
that B1 ∧B3 holds at line 82. Now suppose that at line 82, we have ¬bug . This
means that each strengthen() called at lines 79–81 returned from line 36. Thus,
the condition f(K − 2) ∧ T =⇒ S′ was established at some point, and once
established, it continues to hold due to the frame monotonicity of strengthen()
and propagate(). Since B4 ≡ B3 ∧ (f(K− 2) ∧ T =⇒ S′), we therefore know
that B1 ∧B4 holds at line 82. Also, B2 holds at line 82 since a new lemma α is
only added to frame Fi[j+ 1] by strengthen() (line 42) and propagate() (line
56) under the condition f(j)∧T =⇒ α′. Note that once f(j)∧T =⇒ α′ is true,
it continues to hold even in the concurrent setting due to frame monotonicity.
Finally, the statement at line 88 transforms I6 to I4. The correctness of ic3sync
is summarized by Theorem 2. Its proof is in Appendix A.

Theorem 2. If IC3Sync() returns >, then the problem is safe. If IC3Sync()
returns ⊥, then the problem is unsafe.

3.2 Asynchronous Parallel IC3

The next parallelized version of ic3, denoted ic3async, runs a number of copies
of the sequential ic3 “asynchronously” in parallel. Let ic3async(n) be the in-



127 //-- global variables
128 var (I, T, S) : problem (P )
129 var ∀i ∈ [1, n] � Fi,Pi: frame []
130 var ∀i ∈ [1, n] � Ki: int (size of Fi and Pi)
131 var bug, safe: bool (CEX and proof flags)
132
133
134 void IC3PrCopy (i)
135 Ki := 3; Fi[0] := I;
136 Fi[1] := ∅; Fi[2] := ∅;
137 while (>)
138 @INV{I7 : C1 ∧ C2 ∧ C3}
139 strengthen(Fi,Ki);
140 @INV{I8 : bug ∨ (C1 ∧ C2 ∧ C4)}
141 if (bug) return;
142 @INV{I9 : C1 ∧ C2 ∧ C4}
143 propProof(Fi,Ki);
144 if (safe) return;
145 @INV{I9}
146 Fi[Ki] := ∅; Ki := Ki + 1;

147 bool IC3Proof (n)

148 if (I ∧ ¬S 6= ⊥) ∨ (I ∧ T ∧ ¬S′ 6= ⊥)
149 return ⊥;
150 bug := ⊥; safe := ⊥;
151 IC3PrCopy(1) � · · · � IC3PrCopy(n);
152 return bug ? ⊥ : >;
153
154 void propProof(F,K)
155 for j : 1 . . . K − 2
156 for α ∈ F [j]

157 if (f(j) ∧ T =⇒ α′)
158 F [j + 1] := F [j + 1] ∪ {α};
159 F [j] := F [j] \ {α};
160 if (F [j] = ∅)
161 Pj :=

⋃
j<k≤K−1

F [k];

162 Π :=
⋃

{i|1≤i≤n∧j<Ki}
Pi;

163 if (Π ∧ T =⇒ Π′)
164 safe := >; return;

Fig. 4. Pseduo-Code for ic3proof. Variables are passed by reference. Function
strengthen() is defined in Fig. 1. Formulas f(j), I7, I8, and I9 are defined in Fig. 3.

stance of ic3async consisting of n copies of ic3 executing concurrently. Similar
to ic3sync, the copies maintain separate frames, interact by sharing lemmas
when computing f(i), and declare the problem unsafe if any copy finds a coun-
terexample. However, due to the lack of synchronization, proof detection is dis-
tributed over all the copies instead of being centralized in the main thread.

Fig. 3 shows the pseudo-code for ic3async(n). The main function is
IC3Async(). After checking the base cases (lines 102–103), it initializes flags
(line 104), lauches n copies of ic3 in parallel (line 105) and waits for some copy
to terminate (the � operator), and checks the flag and returns with an appropri-
ate result (line 106). Function IC3Copy() is similar to IC3() in Fig. 1. The key
difference is that lemmas from all copies are used to compute f(j) (lines 90–91).

Correctness. The correctness of ic3async follows from the invariants spec-
ified in Fig. 3. To see why these invariants are valid, note that C1 and C3

are always preserved due to frame monotonicity. If strengthen() returns with
bug = ⊥, then it returned from line 36, and hence f(Ki − 2) ∧ T =⇒ S′ was
true at some point in the past and continues to hold due to frame monotonicity.
Together with C3, this implies that C4 holds at line 119. Also, C2 holds at line
119 since a new lemma α is only added to frame Fi[j+1] by strengthen() (line
42) and propagate() (line 56) under the condition f(j)∧ T =⇒ α′. Note that
once f(j)∧T =⇒ α′ is true, it continues to hold even under concurrency due to
frame monotonicity. Hence, I8 holds at line 119. Since bug is never set to ⊥, this
means that I9 holds at line 121 even under concurrency. Finally, the statement
at line 126 transforms I9 to I7. The correctness of ic3async is summarized by
Theorem 3. Its proof is in Appendix A.

Theorem 3. If IC3Async() returns >, then the problem is safe. If IC3Async()
returns ⊥, then the problem is unsafe.



3.3 Asynchronous Parallel IC3 With Proof-Checking

The final parallelized version of ic3, denoted ic3proof, is similar to ic3async,
but add more aggressive checking for proofs. Let ic3proof(n) be the instance
of ic3async consisting of n copies of ic3 executing concurrently. Similar to
ic3async, the copies maintain separate frames, interact by sharing lemmas when
computing f(i), and declare the problem unsafe if any copy finds a counterex-
ample. However, whenever a copy finds an empty frame, it checks whether the
set of lemmas over all the copies for the frame forms an inductive invariant.

The pseudo-code for ic3proof(n) is shown in Fig. 4. The main function is
IC3Proof(). After checking the base cases (lines 148–149), it initializes flags
(line 150), lauches n copies of ic3 in parallel (line 151) and waits for at least one
copy to terminate, and checks the flag and returns with an appropriate result
(line 152). Each copy of ic3 is similar to the sequential ic3 in Fig. 1. The key
difference is in propProof() where, once an empty frame is detected (line 160),
we check whether a proof has been found by collecting the lemmas for the frame
(lines 161–162), and checking if these lemmas are inductive (line 163).

Correctness. The correctness of ic3proof follows from the invariants (whose
validity is similar to those for ic3async) specified in Fig. 4. It is summarized
by Theorem 4. The proof of the theorem is in Appendix A.

Theorem 4. If IC3Proof() returns >, then the problem is safe. If IC3Proof()
returns ⊥, then the problem is unsafe.

4 Parallel ic3 Portfolios

In this section, we investigate the question of how a good portfolio size can
be selected if we want to implement a portfolio of ic3pars. We begin with an
argument about the pdf of the runtime of ic3async(n).

Conjecture 1. The runtime of ic3async(n) converges to a Weibull rv as n→∞.

Argument: Recall that each execution of ic3async(n) consists of n copies of ic3
running in parallel, and that ic3async(n) stops as soon as one copy finds an an-
swer. We can consider the runtime of each copy of ic3 to be a rv. Specifically, let
Xi be the rv denoting the runtime of the i-th copy of ic3 assuming it was allowed
to run till completion. Recall that the pdf of Xi has a lower bound of 0, since no
run of ic3 can take negative time. Also the set of random variables (X1, . . . , Xn)
are i.i.d. since the copies of ic3 only interact with each other logically. Finally,
let X be the random variable denoting the runtime of ic3async(n). Note that
X = min(X1, . . . , Xn). Hence, by the EVT, X ∼ wei(k, λ) for large n. ut

A similar argument holds for ic3sync and ic3proof, and therefore their
runtime should follow Weibull as well. In the rest of this section, we write ic3par
to mean a specific parallel ic3 variant. Empirically, we find that the runtime of
ic3par(n) follows a Weibull distribution closely for even modest values of n.
Specifically, we selected 10 examples (5 safe and 5 buggy) from HWMCC14, and



ic3sync (4) ic3async (4) ic3proof (4)
Example k λ µ, µ∗ σ, σ∗ k λ µ, µ∗ σ, σ∗ k λ µ, µ∗ σ, σ∗

6s286 4.07 1119 1015,1015 280,274 4.44 990 902,903 230,220 4.35 980 892,892 232,228
intel026 2.71 49.0 43.6,44.2 17.3,14.6 3.70 50.2 45.3,46.2 13.6,10.1 3.70 50.1 45.2,46.1 13.6,10.3
6s273 3.80 26.1 23.6,23.6 6.93,6.57 4.11 23.5 21.3,21.4 5.85,5.36 4.17 23.3 21.2,21.3 5.73,5.29

intel057 6.58 16.0 14.9,15.1 2.66,2.11 7.31 17.2 16.1,16.1 2.60,2.46 7.52 17.8 16.7,16.9 2.63,2.07
intel054 7.82 24.3 22.8,23.0 3.46,2.94 8.69 26.1 24.6,24.8 3.38,2.84 9.26 26.1 24.7,24.8 3.20,2.92

6s215 2.38 7.69 6.82,7.03 3.05,2.34 4.71 6.75 6.17,6.21 1.49,1.34 4.72 6.38 5.84,5.90 1.41,1.21
6s216 1.95 35.1 31.1,31.0 16.6,16.9 3.56 27.5 24.8,24.9 7.74,6.97 2.78 28.1 25.0,25.1 9.74,9.05

oski3ub1i 5.98 54.9 50.9,51.4 9.90,7.90 7.02 52.3 48.9,49.2 8.20,6.71 4.78 54.8 50.2,50.8 11.9,9.53
oski3ub3i 5.71 52.4 48.5,48.9 9.84,8.00 5.51 52.2 48.2,48.6 10.1,8.51 5.66 52.2 48.2,48.5 9.87,8.39
oski3ub5i 5.08 66.8 61.4,61.9 13.8,11.6 4.94 67.2 61.6,62.0 14.2,12.4 4.93 66.2 60.7,61.1 14.0,12.1

SAFE 5.00 246 224,224 62.1,60.2 5.65 221 202,202 51.1,48.3 5.80 219 200,200 51.4,49.7
BUG 4.22 43.4 39.7,40.0 10.6,9.37 5.15 41.2 37.9,38.2 8.36,7.20 4.58 41.5 38.0,38.3 9.42,8.07
ALL 4.61 145 131,132 36.4,34.7 5.40 131 120,120 29.7,27.7 5.19 130 119,119 30.4,28.9

Fig. 5. Fitting ic3par(4) runtime to Weibull. First 5 examples are safe, next 5 are
buggy; SAFE, BUG, ALL = average over safe, buggy, and all examples; µ, µ∗ = pre-
dicted, observed mean; σ, σ∗ = predicted, observed standard deviation.

for each example we: (i) executed ic3async(4) around 3000 times; (ii) measured
the runtimes; (iii) estimated the k and λ values for the Weibull distribution
that best fits these values; and (iv) computed the observed mean and standard
deviation from the data, and the predicted mean and standard deviation from the
k and λ estimates. We repeated these experiments with ic3sync and ic3proof.

The results are shown in Fig. 5(a). We see that in all cases, the observed
mean and standard deviation is quite close to the predicted ones, indicating
that the estimated Weibull distribution is a good fit for the measured runtimes.
ic3async and ic3proof have similar performance, are and slightly faster overall
than ic3sync, indicating that additional synchronization is counter-productive.
The estimated k and λ values vary widely over the examples, indicating their
diversity. Note that smaller values of λ mean a smaller expected runtime.

Determining Portfolio Size. Consider a portfolio of ic3pars. In general, in-
creasing the size of the portfolio reduces the expected time to solve a problem.
However, there is diminishing returns to adding more solvers to a portfolio in
terms of expected runtime. We now express this mathematically, and derive a
formula for computing a portfolio size to achieve an runtime with a target proba-
bility. Consider a portfolio of m ic3par solvers run on a specific problem. Let Yi
denote the runtime of the i-th ic3par. From previous discussion we know that

Yi ∼ wei(k, λ) for some k and λ. Therefore, the cdf of Yi is: FYi(x) = 1−e−( xλ )k .
Let Y be the rv denoting the runtime of the portfolio. Thus, we have Y =

min(Y1, . . . , Ym). More importantly, the cdf of Y is:

FY (x) = 1− (1− FY1
(x))× · · · × (1− FYm(x))

= 1− (e−(
x
λ )
k

)m = 1− e−m( xλ )
k

= 1− e−( xm
1
k

λ )k

Note that this means Y is also a Weibull rv, not just when m → ∞ (as
per the EVT) but for all m. More specifically, Y ∼ wei(k, λ

m
1
k

). Recall that if

m = 1, then the expected time to solve the problem by the portfolio is E[Y1].



We refer to this time as t∗, the expected solving time for a single ic3par. Since
Y1 ∼ wei(k, λ), it is known that t∗ = λΓ (1+ 1

k ), where Γ is the gamma function.
Now, we come to our result, which expresses the probability that a portfolio of
m ic3pars will require no more than t∗ to solve the problem.

Theorem 5. Let p(m) be the probability that Y ≤ t∗. Then p(m) > 1 − e− m
eγ

where γ ≈ 0.57721 is the Euler-Mascheroni constant.

Proof. We know that:

p(m) = FY (t∗) = 1− e−m(Γ (1+ 1
k ))

k

= 1− (α(k))m, where α(k) = e−(Γ (1+ 1
k ))

k

Next, observe that α(k) increases monotonically with k but does not diverge
as k → ∞. For example, Fig. 11 in Appendix B shows a plot of α(k). Indeed,

it can be shown that (see Lemma 2 in Appendix B): limk→∞ α(k) = e−
1
eγ . In

practice, as seen in Fig. 11 in Appendix B, the value of α(k) converges quite

rapidly to this limit as k increases. For example, α(5) > 0.91 ·e− 1
eγ , and α(10) >

0.95 · e− 1
eγ . Since ∀k � α(k) < e−

1
eγ , we have our result:

p(m) > 1− (e−
1
eγ )m = 1− e− m

eγ

Achieving a Target Probability. Now suppose we want pm to be greater than
some target probability p. Then, from Theorem 5, we have:

p = 1− (e−
1
eγ )m ⇐⇒ 1− p = e−

m
eγ ⇐⇒ ln(1− p) = −m

eγ

⇐⇒ ln( 1
1−p ) = m

eγ ⇐⇒ m = eγ ln( 1
1−p )

For example, if we want p = 0.99999, then m ≈ 20. Thus, a portfolio of 20
ic3pars has about 0.99999 probability of solving a problem at least as quickly as
the expected time in which a single ic3par will solve it. We validated the efficacy
of Theorem 5 by comparing its predictions with empirically observed results
on the HWMCC14 benchmarks. Overall, we find the observed and predicted
probabilities to agree significantly. Further details are presented in Section 5.2.

Speeding Up the Portfolio. To reduce the portfolio’s runtime below t∗, we must
increase m appropriately. In general, for any constant c ∈ [0, 1], the probability
that a portfolio of m ic3par solvers will have a runtime ≤ c · t∗ is given by:

p(m, c, k) = 1− e−m(c·Γ (1+ 1
k ))

k

For c < 1 we do not have a closed form for lim
k→∞

p(m, c, k), unlike when c = 1.

However, the value of p(m, c, k) is computable for fixed m, c and k. Fig. 6(a) plots
p(m, c, 4) for m = {1, . . . , 100} and c = {0.4, 0.5, 0.6}. Fig. 6(b) plots p(m, .5, k)
for m = {1, . . . , 100} and k = {3, 4, 5}. As expected, p(m, c, k) increases with:
(i) increasing m; (ii) increasing c; and (iii) decreasing k. One challenge here is
that we do not know how to estimate k for a problem without actually solving
it. In general, a smaller value of k means that a smaller portfolio will reach the
target probability. In our exeriments – recall Fig. 5(a) – we observed k-values in
a small range (1–10) for problems from HWMCC14. These numbers can serve
as guidelines, and could be refined based on additional experimentation.



(a) (b)

Fig. 6. (a) p(m, c, 4) for different values of c; (b) p(m, .5, k) for different values of k.

5 Experimental Results

We implemented ic3sync, ic3async and ic3proof by modifying a pub-
licly available reference implementation of ic3 (https://github.com/arbrad/
IC3ref), which we call ic3ref. All propositional queries in ic3 are implemented
by calls to minisat. We refer to the variant of ic3ref that uses a randomized
minisat (invoked via IC3 -r) as ic3rnd. We use ic3rnd to introduce uncer-
tainty in the proof search by ic3 purely by randomizing the backend SAT solver.
We performed two sets of experiments – one to evaluate the effectivess of the
parallel ic3 solvers, and another to validate our statistical analysis of their port-
folios. All our tools and results are available at http://somewhere.

Benchmarks. We constructed four benchmarks. The first was constructed by
taking the safe examples from HWMCC14 (http://fmv.jku.at/hwmcc14cav),
simplifying them with the iimc (http://ecee.colorado.edu/wpmu/iimc) tool
(via iimc-hwmcc13 -t pp), and selecting the ones solved by ic3ref within 900s
on a 8 core 3.4GHz machine with 8GB of RAM. The remaining three benchmarks
were constructed similarly from the buggy examples from HWMCC14, and the
safe and buggy examples from the TIP benchmark (http://fmv.jku.at/aiger/
tip-aig-20061215.zip), respectively. We refer to the four benchmarks as hwc-
safe, hwcbug, tipsafe, and tipbug, respectively.

SAT Solver Pool. The function f (cf. Figs. 1–4) is implemented by a SAT
solver (minisat). A separate SAT solver Si is used for each f(i). Whenever
f(i) changes due to the addition of a new lemma to a frame, the corresponding
solver Si is also updated by asserting the lemma. To avoid a single SAT solver
from becoming the bottleneck between competing threads, we use a “pool” of
minisat solvers to implement each Si. The solvers are maintained in a FIFO
queue. When a thread requests a solver, the first available solver is given to it.
When a lemma is added to the pool, it is added to all available solvers, and
recorded as “pending” for the busy ones. When a busy solver is returned by a



ic3sync ic3async ic3proof ic3rnd
B B∗ Mean Max Mean Max Mean Max Mean Max

hwcsafe 31 1.30 5.61 1.58 5.47 1.60 4.08 1.17 4.64
hwcbug 14 2.49 18.7 14.3 151 25.1 309 1.07 1.49
tipsafe 14 1.28 4.50 2.61 11.1 2.29 12.8 1.37 3.80
tipbug 9 2.23 5.35 2.82 7.32 3.50 12.1 1.16 2.17

safe 44 1.30 5.61 1.93 11.1 1.83 12.8 1.24 4.64
bug 23 2.38 18.7 9.58 151 16.3 309 1.11 2.17

all 67 1.67 18.7 4.74 151 6.79 309 1.19 4.64

Fig. 7. Speedup of ic3sync, ic3async, ic3proof and ic3rnd compared to ic3ref.

thread, all pending lemmas are added, and the solver is inserted at the back of
the queue. We refer to the number of solvers in each pool as SPSz.

5.1 Comparing Parallel ic3 Variants

These experiments were carried on a Intel Xeon machine with 128 cores,
each running at 2.67GHz, and 1TB of RAM. For each solver S selected from
{ic3async(4), ic3sync(4), ic3proof(4), ic3rnd} and each benchmark B, and
with SPSz = 3, we performed the following steps: (i) extract all problems from
B that are solved by ic3ref in at least 10s; call this set B∗; (ii) solve each prob-
lem in B∗ with ic3ref and also with a portfolio of 20 S solvers, compute the
ratio of the two runtimes; this is the speedup; (iii) compute the mean and max
of the speedups over all problems in B∗. Figure 7 shows the results obtained.
In all cases, we see speedup. On this particular run, ic3proof performs best
overall, with an average speedup of over 6 and a maximum speedup of over 300.
Note however, that performance will vary across runs due to unpredictability
of runtime. As in the non-portfolio case (cf. Fig. 5) ic3proof and ic3async
have similar performance, and are better than ic3sync. The pattern is followed
for both safe and buggy examples. Finally, ic3rnd provides mediocre speedup
across all examples (cf. the “Max” column) indicating that parallelization en-
ables broader search for proofs compared to randomizing the SAT solver.

5.2 Portfolio Size

To validate Theorem 5, we compared its predictions to empirically observed
results as follows (again using SPSz = 3):

1. Select a set of problems – same as in Fig. 5(a) – from HWMCC14, and
process each problem as follows.

2. Solve the problem b times using ic3par(4). These experiments are the same
as the ones used for Fig. 5(a). Hence b is the value appearing in the second
column of Fig. 5(a). This gives a set of runtimes t1, . . . , tb. Fit these runtimes
to a Weibull distribution to obtain the estimated value of k (the same as the
third column of Fig. 5(a)).

3. Compute t̃ = mean(t1, . . . , tb). This is the estimated average time for
ic3par(4) to solve the problem.



ρ - ic3async ρ - ic3sync ρ - ic3proof
Example Mean StDev Mean StDev Mean StDev
6s286 1.0000 0.0016 1.0010 0.0046 0.9996 0.0032

intel026 1.0042 0.0233 1.0028 0.0163 1.0027 0.0163
6s273 1.0025 0.0122 1.0031 0.0149 1.0030 0.0154

intel057 0.9968 0.0214 0.9855 0.0381 1.0002 0.0136
intel054 1.0029 0.0162 0.9998 0.0076 0.9994 0.0080

6s215 1.0001 0.0057 0.9988 0.0099 0.9991 0.0058
6s216 1.0038 0.0204 1.0025 0.0163 1.0034 0.0182

oski3ub1i 1.0063 0.0321 1.0055 0.0293 1.0049 0.0274
oski3ub3i 1.0042 0.0230 1.0049 0.0259 1.0053 0.0272
oski3ub5i 1.0061 0.0312 1.0070 0.0358 1.0069 0.0357
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Fig. 8. Validating Theorem 5; (a) mean and standard deviation of ratios of predicted
and observed probabilities; (b) scatter plot of predicted and observed probabilities.

4. Pick a portfolio size m. Start with m = 1.
5. Divide t1, . . . , tb into blocks of size m. Let B = b bmc. We now have B blocks of

runtime T1, . . . , TB , each consisting of m elements. Thus, T1 = {t1, . . . , tm},
T2 = {tm+1, . . . , t2m}, and so on. For i = 1, . . . , B, compute µi = min(Ti).
Note that each µi represents the runtime of a portfolio ofm ic3par(4) solvers
on the problem.

6. Let n(m) be the number of blocks for which µi ≤ t̃, i.e., n(m) =

|{i ∈ [1, B] | µi ≤ t̃}|. Compute p∗(m) = n(m)
B . Note that p∗(m) is the es-

timate of p(m) based on our experiments. Compute p(m) = 1 − (α(k))m

using the estimated value of k from Step 2. Compute ρ(m) = p∗(m)
p(m) . We

expect ρ(m) ≈ 1.
7. Repeat steps 5 and 6 with m = 2, . . . , 100 to obtain the sequence ρ =
〈ρ(1), . . . , ρ(100)〉. Compute the mean and standard deviation of ρ.

Fig. 8(a) shows the results of the above steps over all the selected examples.
We see that for each example, the mean of ρ is very close to 1 and its standard
deviation is very close to 0, indicating that p(m) and p∗(m) agree considerably.
Furthermore, Fig. 8(b) shows a scatter plot of all p∗(m) values computed against
their corresponding p(m). Note that most values are very close to the (red) x = y
line, as expected.

5.3 Parameter Sweeping

In this section we evaluate the performance of ic3proof when selecting differnt
combinations of ic3par parameters. We observed in 5.1 that the variants of
ic3par each have a chance of being the best solver for differnt benchmarks.
From the previous work utilizing the portfolio technique (TODO prune this list)
[20, 17, 12, 14, 19, 16], we see that using a suite of heterogeneous solvers would



Fig. 9. ic3proof speedup on three benchmarks compared to ic3ref. The intensity
of a cell indicates the corresponding combination of ic3par parameters solves the
benchmark faster.

likely be successfull. With this inspiration, we determined that running portfolios
of ic3par in differnt configurations could be successfull. This effort would also
help to better characterize the behavior of ic3par.

ic3par has two parameters: number of threads running a copy of ic3,
and SPSz. We identify an instance of ic3par run with these parameters as
ic3par(i, s) where i is the number of ic3 threads and SPSz = s. Thus,
ic3proof(4, 3) was used is all previous experiments.

Conjecture 2. In the abscence of knowledge of optimal parameter values for
ic3par(i, s), a heterogeneous portfolio using random feasible parameter values
(I, S) will, on average, yield faster ic3par performance than a homogenous port-
folio with constant parameter values (i, s) = (4, 3). Where I and S are defined
by a random discrete variable r.v. X = x; x ∈ {1, 2, . . . , 8}.

To investigate Conjecture 2, we estimated the speedup over ic3 for portfolios
of ic3proof(i, s) and ic3proof(I, S) as follows:

1. Select a benchmark from B and time its performance with ic3
2. Time 100 runs if ic3proof in each of the 64 possible parameter combina-

tions ic3proof(I, S) to empiracly charachterize the random running time
distribution across the parameter space.

3. Select randomly 100 portfolio blocks consisting of 20 run times
of ic3proof(i, s) from the 6,400 recorded running times convering
ic3proof(I, S) performed in Step 2 Take minimum of each block as the
portfolio time, and average the 100 minimums.

4. Select the 5 portfolio blocks of size 20 from the 100 runs of ic3proof(4, 3)
which were performed as part of Step 2. Take minimum of each block as the
portfolio time, and average the 5 minimums.

For this investigation we constructed a portfolio simulator which used the
running times gathered from up to 6400 tests per benchmark and constructed
ex post facto portfolios by selecting running times from the desired parameter
configuration. We utilized over 11,000 hours of compute time across 11 dual pro-
cessor machines with Intel(R) Xeon(R) 2.40GHz CPU’s for a total of 176 cores.



Time Speedup
Example ic3ref Sync Async Proof Sweep
6s286 947.6 1.70 1.75 1.88 1.78

intel026 78.33 2.63 2.36 2.37 2.58
6s273 31.06 2.22 2.30 2.28 1.63

intel057 31.33 2.54 2.40 2.30 2.64
intel054 55.89 3.08 2.78 2.79 3.93

Time Speedup
Example ic3ref Sync Async Proof Sweep
6s215 12.20 2.79 3.11 3.20 2.35
6s216 67.24 4.66 4.41 4.90 4.22

oski3ub1i 83.64 2.06 2.12 2.22 1.96
oski3ub3i 79.41 2.12 2.23 2.18 1.95
oski3ub5i 127.3 2.81 2.87 2.87 2.79

Fig. 10. Speedup via parameter sweeping.

Summarizing graphics were produced for visualization of performance across
the parameter space (see Fig. 9.) The visualizations and simulated results pre-
sented evidence in favor of 2, as speedup patterns across the parameter space
were varied for all of the selected benchmark examples and every simulated
ic3proof(I, S) portfolio ran faster than simulated ic3proof(4, 3) portfolios.

To attempt to validate the conjecture, actual heterogenous ic3par(I, S) port-
folios were run on the 10 selected benchmarks from Section 4. Each portfolio was
run at least XXX times, and the average portfolio times were then compared.
These results (shown in Figure 10) show that averaged across these 10 examples,
ic3par(I, S) is as fast as any single ic3par variant. The limited ammount of
data collected to validate this conjecture does not support any strong claims, but
from what we have observed: using heterogenous portfolios of ic3proof gives
the same speedup as picking the best possible ic3par variant. The advantage to
this technique is for a new problem when the strongest performing variant can
not be known ahead of time.

6 Conclusion

We present three ways to parallelize ic3. Each variant uses a number of threads
to speed up the computation of an inductive invariant or a CEX, sharing lemmas
to minimize duplicated effort. They differ in the degree of synchronization and
technique to detect if an inductive invariant has been found. The runtime of
these solvers is unpredictable, and varies with thread-interleaving. We explore
the use of portfolios to counteract the runtime variance. Each solver in the
portfolio potentially searches for a different proof/CEX. The first one to succeed
provides the solution. Using the Extreme Value theorem and statistical analysis,
we construct a formula that gives us a portfolio size to solving a problem within
a target time bound with a certain probability. Experiments on HWMCC14
benchmarks show that the combination of parallelization and portfolios yields
an average speedups of 6x over ic3, and in some cases speedups of over 300. An
important area of future work is the effectiveness of parallelization and portfolios
in the context of software verification via a generalization of ic3 [10].
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A Proof of Correctness of ic3 and its Parallel Versions

We begin with a useful Lemma.

Lemma 1. Suppose there exists an index i such that the following hold:

α1 : I =⇒ f(i) α2 : f(i) ∧ T =⇒ f ′(i+ 1)

α3 : f(i) ∧ T =⇒ S′ α4 : f(i) = f(i+ 1) α5 : I =⇒ S

Then Post0+(I) ⊆ S.

Proof. Since Post(·) is monotonic:

α1 ∧ α2 ∧ α4 =⇒ Post(I) ⊆ Post(f(i))

=⇒ Post(I) ⊆ f(i+ 1)

=⇒ Post(I) ⊆ f(i)

From this, applying Post(·) again, we get:

α1 ∧ α2 ∧ α4 =⇒ Post2(I) ⊆ Post(f(i))

=⇒ Post2(I) ⊆ f(i+ 1)

=⇒ Post2(I) ⊆ f(i)

Since, we can continue arbitrarily many times like this, we have:

α1 ∧ α2 ∧ α4 =⇒ Post1+(I) ⊆ Post(f(i))

From the above and α3, we have Post1+(I) ⊆ S. Also, from α5, we know that
Post0(I) ⊆ S. Hence, Post0+(I) ⊆ S, which is what we want. ut

We now prove the theorems in Section 3.

Theorem 1. If IC3() returns >, then the problem is safe. If IC3() returns ⊥,
then the problem is unsafe.

Proof. If IC3() returns ⊥, strengthen() sets bug to >. Hence, there exists a
sequence 〈(m0, 0), (m1, 1), . . . , (mK−2,K− 2)〉 such that:

m0 |= I ∧mK−2 |= ¬S ∧ ∀i ∈ [0,K− 2) �mi ∧ T ∧m′i+1 6= ⊥ (1)

This sequence leads to a counterexample. The problem is unsafe. If IC3() returns
>, from lines 27–28 we have:

∃i ∈ [1,K− 2] � F[i] = ∅ =⇒ ∃i ∈ [1,K− 2] � f(i) = f(i+ 1)

This, together with I3, the check for base cases and Lemma 1 implies that
Post0+(I) ⊆ S. The problem is safe. ut



Theorem 2. If IC3Sync() returns >, then the problem is safe. If IC3Sync()
returns ⊥, then the problem is unsafe.

Proof. If IC3Sync() returns ⊥, then some call to stregthen(Fi,K) returns
with bug = >. As in the case of ic3, this implies that there exists a sequence
〈(m0, 0), (m1, 1), . . . , (mK−2,K− 2)〉 such that:

m0 |= I ∧mK−2 |= ¬S ∧ ∀i ∈ [0,K− 2) �mi ∧ T ∧m′i+1 6= ⊥ (2)

This sequence leads to a counterexample. The problem is unsafe. If IC3Sync()
returns >, then from lines 85–86, we have ∃j ∈ [1,K − 2] � ∀i ∈ [1, n] � Fi[j] =
∅ =⇒ ∃j ∈ [1,K − 2] � f(j) = f(j + 1). This, together with I6, the check for
base cases and Lemma 1 implies that Post0+(I) ⊆ S. The problem is safe. ut

Theorem 3. If IC3Async() returns >, then the problem is safe. If IC3Async()
returns ⊥, then the problem is unsafe.

Proof. If IC3Async() returns ⊥, then some call to stregthen() returns with
bug = >. As in the case of ic3, this implies that there exists a sequence
〈(m0, 0), (m1, 1), . . . , (mK−2,K− 2)〉 such that:

m0 |= I ∧mK−2 |= ¬S ∧ ∀i ∈ [0,K− 2) �mi ∧ T ∧m′i+1 6= ⊥ (3)

This sequence leads to a counterexample. The problem is unsafe. If IC3Async()
returns >, then from lines 112–113, we have ∃j ∈ [1,K− 2] � ∀i ∈ [1, n] � Fi[j] =
∅ =⇒ ∃j ∈ [1,K − 2] � f(j) = f(j + 1). This, together with I9, the check for
base cases and Lemma 1 implies that Post0+(I) ⊆ S. The problem is safe. ut

Theorem 4. If IC3Proof() returns >, then the problem is safe. If IC3Proof()
returns ⊥, then the problem is unsafe.

Proof. If IC3Proof() returns ⊥, then some call to stregthen() returns with
bug = >. As in the case of ic3, this implies that there exists a sequence
〈(m0, 0), (m1, 1), . . . , (mK−2,K− 2)〉 such that:

m0 |= I ∧mK−2 |= ¬S ∧ ∀i ∈ [0,K− 2) �mi ∧ T ∧m′i+1 6= ⊥ (4)

This sequence leads to a counterexample. The problem is unsafe. If IC3Async()
returns >, then some call to propProof() returns with safe = >. Then, from
the check at lines 163, and the fact that C1 ∧C4 holds at line 163, we know that
Π is an inductive invariant that implies S. The problem is safe. ut

Theorem 5. All three parallel variants of ic3 terminate on all inputs.

Proof. Recall the function f from Figs. 2–4. For any index i, let |f(i)| denote
the number of satisfying solutions of f(i). Let us write K∗ to mean K in the
case of ic3sync, and max(K1, . . . ,Kn) in the case of ic3async and ic3proof.
It can be shown that the following is an invariant of all ic3pars.

|f(0)| = |I| ∧ ∀j ∈ [1,K∗ − 1] � f(j − 1) ≤ f(j)



In other words, f(0) has exactly the same number of solutions as the initial
states, and the number of solutions of f(j) grows monotonically with j. Suppose
an execution of ic3par does not terminate. Then we must reach a point where
K∗ > 2|V | and ∀j ∈ [1,K∗ − 1] � ∃i ∈ [1, n] � Fi[j] 6= ∅. But this means that
∀j ∈ [1,K∗ − 1] � f(j − 1) < f(j). Since |I| > 0 (otherwise the algorithm
terminates with the check for base cases), we have |f(K∗ − 1)| > 2|V |. This is
absurd since there cannot be more than 2|V | solutions to any formula over V . ut

B Statistical Analysis of ic3par Portfolios

Fig. 11. Plot of α(k) against k.

Lemma 2. Let α(k) = e−(Γ (1+ 1
k ))

k

. Then lim
k→∞

α(k) = e−
1
eγ .

Proof. It suffices to show that:

lim
k→∞

(Γ (1 +
1

k
))k = e−γ

or, equivalently:

lim
k→∞

k · ln(Γ (1 +
1

k
)) = −γ

Using the result 2:

ln(Γ (1 + z)) = −γ · z +

∞∑
n=2

ζ(n)

n
· (−z)n, if |z| < 1

2 This result is mentioned at https://en.wikipedia.org/wiki/Gamma_function.
It can be derived from another result (equation 20 on page 621) in the fol-
lowing paper – Wrench, J. W. Jr. ”Concerning Two Series for the Gamma
Function.” Math. Comput. 22, 617-626, 1968. The paper is available at http:

//www.ams.org/journals/mcom/1968-22-103/S0025-5718-1968-0237078-4/

S0025-5718-1968-0237078-4.pdf.



where ζ(m) is the Riemann zeta function, we get:

lim
k→∞

k · ln(Γ (1 +
1

k
)) = lim

k→∞
k · (−γ · 1

k
+

∞∑
n=2

ζ(n)

n
· (−1

k
)n)

= −γ + lim
k→∞

k

∞∑
n=2

ζ(n)

n
· (−1

k
)n

= −γ + lim
k→∞

∞∑
n=2

ζ(n)

n
· (−1)n · 1

kn−1

Since lim
k→∞

1
kn−1 = 0 for n ≥ 2, we immediately get our result:

lim
k→∞

k · ln(Γ (1 +
1

k
)) = −γ

ut


